

# CHAPTER 7. TRAVEL PATTERNS AND TRAVEL FORECASTING

## **TRAVEL PATTERNS**

Northwest Arkansas has experienced unprecedented growth in population and employment in the past 25 years. The economic vitality and diversity of population have been strong catalysts for the growth of the region.

In Northwest Arkansas, the majority of the population uses an automobile for work related trips. According to the American Community Survey (ACS) 5-year estimate of 2019, the vast majority, over 90 percent of workers 16 years and over, in Benton and Washington Counties in Arkansas and McDonald County in Missouri, commuted to work by car, truck, or van.

Figure 7.1 and Figure 7.2 illustrate the percentages for each mode of transportation that workers 16 years and over used to commute to work for two five-year estimates (2009-20013 and 2015-2019). In Benton County, the percent of workers who drove alone increased from 82.4 percent in 2013 to 84.9 percent in 2019. In Washington County this group increased from 76.8 percent in 2013 to 78.6 in 2019. McDonald County experienced an increase from 78.6 to 79.5 percent. For the public transportation mode, in Washington County which decreased from 1 percent to 0.7 percent by 2019. In the same category, Benton and McDonald County percent stayed at 0.1 percent.

Mode of Transportation to Work (percent)

Benton County, Arkansas Washington County, Arkansas McDonald County, Missouri

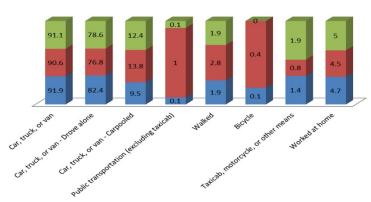



Figure 7.1 - Mode of Transportation to Work (percent) ACS 2009-2013

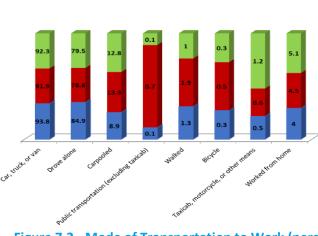



Figure 7.2 - Mode of Transportation to Work (percent) ACS 2015-2019

#### NWARPC 2045 Metropolitan Transportation Plan

In terms of travel time, the ACS data collected between 2009-2013 and 2015-2019 illustrates the following percent by travel time in minutes and patterns by county:

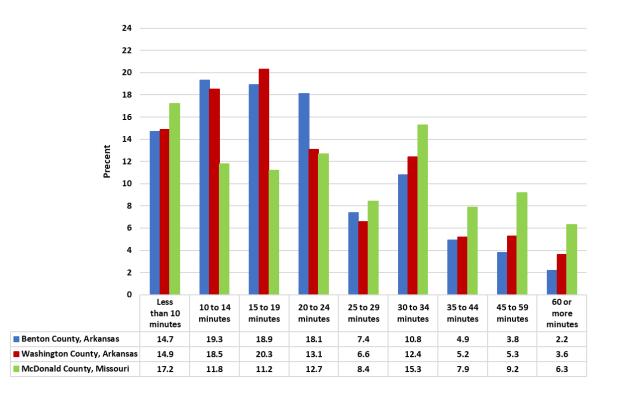



Figure 7.3 - Travel Time Estimate ACS 2009-2013

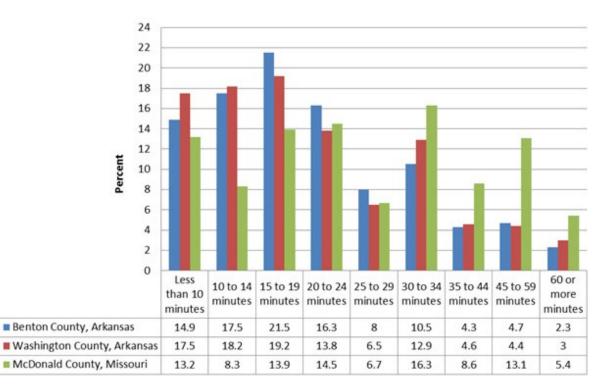



Figure 7.4 - Travel Time Estimate ACS 2015-2019

#### **Daily Vehicle Miles Traveled**

Table 7.1 and Table 7.2 summarize the daily vehicle miles traveled in 2019 by road functional class for Benton and Washington Counties.

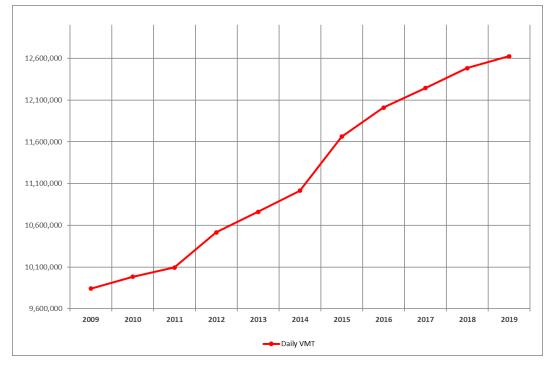
| oute Sign | Functional Class             | Pop: < 5,0     | 000 Rural | Pop: 5,000<br>Small U |         | Pop: >=<br>Urban |           | Tota           | al       |
|-----------|------------------------------|----------------|-----------|-----------------------|---------|------------------|-----------|----------------|----------|
|           |                              | Road<br>Length | DVMT      | Road<br>Length        | DVMT    | Road<br>Length   | DVMT      | Road<br>Length | DVM.     |
| State     | Interstate                   | 0.00           | 0         | 0.00                  | 0       | 17.29            | 1,208,363 | 17.29          | 1,208,36 |
| Highway   | Other Freeways & Expressways | 0.00           | 0         | 0.00                  | 0       | 0.42             | 22,842    | 0.42           | 22,84    |
|           | Other Principal Arterials    | 22.48          | 331,533   | 5.27                  | 135,271 | 35.40            | 841,094   | 63.16          | 1,307,89 |
|           | Minor Arterials              | 50.73          | 232,913   | 22.96                 | 218,576 | 82.66            | 784,438   | 156.35         | 1,235,92 |
|           | Major Collectors             | 88.86          | 233,120   | 7.32                  | 29,009  | 39.93            | 171,660   | 136.11         | 433,78   |
|           | Minor Collectors             | 0.00           | 0         | 0.00                  | 0       | 0.00             | 0         | 0.00           |          |
|           | Locals                       | 0.00           | 0         | 0.23                  | 23      | 0.00             | 0         | 0.23           | 2        |
|           | Total                        | 162.08         | 797,566   | 35.77                 | 382,879 | 175.71           | 3,028,397 | 373.56         | 4,208,84 |
| County    | Other Freeways & Expressways | 0.00           | 0         | 0.00                  | 0       | 0.00             | 0         | 0.00           |          |
| Roads     | Other Principal Arterials    | 0.00           | 0         | 0.00                  | 0       | 0.00             | 0         | 0.00           |          |
|           | Minor Arterials              | 2.65           | 938       | 0.00                  | 0       | 3.55             | 5,647     | 6.20           | 6,58     |
|           | Major Collectors             | 105.46         | 114,041   | 9.65                  | 13,620  | 35.90            | 137,353   | 151.01         | 265,01   |
|           | Minor Collectors             | 59.53          | 19,322    | 0.00                  | 0       | 12.06            | 3,573     | 71.59          | 22,89    |
|           | Locals                       | 1,807.37       | 159,890   | 28.85                 | 5,511   | 119.87           | 28,359    | 1,956.09       | 193,75   |
|           | Total                        | 1,975.01       | 294,190   | 38.50                 | 19,131  | 171.38           | 174,931   | 2,184.89       | 488,25   |
| City      | Other Freeways & Expressways | 0.00           | 0         | 0.00                  | 0       | 0.00             | 0         | 0.00           |          |
| Streets   | Other Principal Arterials    | 0.00           | 0         | 0.00                  | 0       | 0.00             | 0         | 0.00           |          |
|           | Minor Arterials              | 0.32           | 52        | 9.41                  | 42,646  | 97.87            | 890,121   | 107.60         | 932,81   |
|           | Major Collectors             | 16.24          | 6,006     | 24.97                 | 44,373  | 177.38           | 371,069   | 218.59         | 421,44   |
|           | Minor Collectors             | 4.00           | 3,681     | 1.26                  | 740     | 8.75             | 5,157     | 14.01          | 9,57     |
|           | Locals                       | 52.95          | 14,311    | 132.62                | 43,763  | 1,482.65         | 558,376   | 1,668.22       | 616,45   |
|           | Total                        | 73.51          | 24,050    | 168.26                | 131,523 | 1,766.65         | 1,824,722 | 2,008.42       | 1,980,29 |
| BENTON (  | County Total                 | 2,210.60       | 1,115,806 | 242.53                | 533,532 | 2,113.74         | 5,028,050 | 4,566.87       | 6,677,38 |

#### Table 7.1 - Benton County Daily Vehicle Miles Traveled (DMVT) for 2019 – Source: ARDOT

| oute Sign | Functional Class             | Pop: < 5,0     | 000 Rural | Pop: 5,000<br>Small U |      | Pop: >=<br>Urbar |           | Tot            | al       |
|-----------|------------------------------|----------------|-----------|-----------------------|------|------------------|-----------|----------------|----------|
|           |                              | Road<br>Length | DVMT      | Road<br>Length        | DVMT | Road<br>Length   | DVMT      | Road<br>Length | DVM.     |
| State     | Interstate                   | 16.24          | 352,143   | 0.00                  | 0    | 17.70            | 1,052,912 | 33.94          | 1,405,05 |
| Highway   | Other Freeways & Expressways | 0.00           | 0         | 0.00                  | 0    | 3.24             | 102,135   | 3.24           | 102,13   |
|           | Other Principal Arterials    | 10.35          | 154,898   | 0.00                  | 0    | 48.44            | 1,216,999 | 58.79          | 1,371,89 |
|           | Minor Arterials              | 70.94          | 202,698   | 0.00                  | 0    | 54.84            | 600,359   | 125.78         | 803,05   |
|           | Major Collectors             | 80.61          | 90,051    | 0.00                  | 0    | 16.49            | 51,472    | 97.10          | 141,52   |
|           | Minor Collectors             | 5.32           | 3,688     | 0.00                  | 0    | 0.00             | 0         | 5.32           | 3,68     |
|           | Locals                       | 2.64           | 161       | 0.00                  | 0    | 6.14             | 6,241     | 8.77           | 6,40     |
|           | Total                        | 186.11         | 803,639   | 0.00                  | 0    | 146.83           | 3,030,120 | 332.95         | 3,833,75 |
| County    | Other Freeways & Expressways | 0.00           | 0         | 0.00                  | 0    | 0.00             | 0         | 0.00           |          |
| Roads     | Other Principal Arterials    | 0.00           | 0         | 0.00                  | 0    | 0.00             | 0         | 0.00           |          |
|           | Minor Arterials              | 0.00           | 0         | 0.00                  | 0    | 2.60             | 10,929    | 2.60           | 10,92    |
|           | Major Collectors             | 98.47          | 104,639   | 0.00                  | 0    | 44.09            | 70,200    | 142.56         | 174,83   |
|           | Minor Collectors             | 148.02         | 57,302    | 0.00                  | 0    | 19.48            | 14,215    | 167.50         | 71,51    |
|           | Locals                       | 1,466.17       | 159,004   | 0.00                  | 0    | 55.09            | 10,805    | 1,521.26       | 169,80   |
|           | Total                        | 1,712.66       | 320,945   | 0.00                  | 0    | 121.26           | 106,148   | 1,833.92       | 427,09   |
| City      | Other Freeways & Expressways | 0.00           | 0         | 0.00                  | 0    | 0.00             | 0         | 0.00           |          |
| Streets   | Other Principal Arterials    | 0.00           | 0         | 0.00                  | 0    | 1.02             | 18,400    | 1.02           | 18,40    |
|           | Minor Arterials              | 0.00           | 0         | 0.00                  | 0    | 61.20            | 602,007   | 61.20          | 602,00   |
|           | Major Collectors             | 9.47           | 7,104     | 0.00                  | 0    | 174.45           | 624,563   | 183.92         | 631,66   |
|           | Minor Collectors             | 3.42           | 5,921     | 0.00                  | 0    | 10.06            | 6,739     | 13.48          | 12,65    |
|           | Locals                       | 41.95          | 14,308    | 0.00                  | 0    | 851.48           | 407,607   | 893.43         | 421,91   |
|           | Total                        | 54.84          | 27,332    | 0.00                  | 0    | 1,098.21         | 1,659,316 | 1,153.05       | 1,686,64 |
| WASHING   | GTON County Total            | 1,953.61       | 1,151,916 | 0.00                  | 0    | 1,366.30         | 4,795,584 | 3,319.92       | 5,947,50 |

Table 7.2 - Washington County Daily Vehicle Miles Traveled (DMVT) for 2019 – Source: ARDOT

As it can be noted from Table 7.3, the Daily and Annual VMT have increased comparing 2009 to 2019; however, the daily VMT per capita in the two-county area has fluctuated by approximately 1% and has been decreasing slightly over the last few years.


| Year | Population<br>Estimate | Daily<br>VMT | Annual<br>VMT | Daily VMT per<br>capita |
|------|------------------------|--------------|---------------|-------------------------|
| 2009 | 416,394                | 9,840,518    | 3,591,789,070 | 23.63                   |
| 2010 | 424,404                | 9,983,349    | 3,643,922,385 | 23.52                   |
| 2011 | 435,662                | 10,094,273   | 3,684,409,645 | 23.17                   |
| 2012 | 444,473                | 10,514,234   | 3,848,209,644 | 23.66                   |
| 2013 | 454,054                | 10,761,582   | 3,927,977,430 | 23.70                   |
| 2014 | 463,113                | 11,014,631   | 4,020,340,315 | 23.78                   |
| 2015 | 475,084                | 11,663,293   | 4,257,101,945 | 24.55                   |
| 2016 | 486,340                | 12,008,651   | 4,395,166,266 | 24.69                   |
| 2017 | 498,296                | 12,243,078   | 4,468,723,470 | 24.57                   |
| 2018 | 509,569                | 12,483,276   | 4,556,395,740 | 24.50                   |
| 2019 | 518,328                | 12,624,888   | 4,608,084,120 | 24.36                   |

#### Table 7.3 - Annual Vehicles Miles of Travel in the Two County Area Source: ARDOT

Both the Table 7.4 and Figure 7.5 indicate an increasing trend of the total VMT in both Washington and Benton Counties.

|            |            | 2009           |            | 2010           |            | 2011           | 2          | .012           | 2           | .013           | 2          | 2014           |
|------------|------------|----------------|------------|----------------|------------|----------------|------------|----------------|-------------|----------------|------------|----------------|
|            | DVMT       | AVMT           | DVMT       | AVMT           | DVMT       | AVMT           | DVMT       | AVMT           | DVMT        | AVMT           | DVMT       | AVMT           |
| Benton     | 5,209,912  | 1,901,617,880  | 5,273,634  | 1,924,876,410  | 5,297,149  | 1,933,459,385  | 5,561,922  | 2,035,663,452  | 5,690,060   | 2,076,871,900  | 6,036,296  | 2,203,248,040  |
| Washington | 4,630,606  | 1,690,171,190  | 4,709,715  | 1,719,045,975  | 4,797,124  | 1,750,950,260  | 4,952,312  | 1,812,546,192  | 5,071,522   | 1,851,105,530  | 4,978,335  | 1,817,092,275  |
| 2 Counties | 9,840,518  | 3,591,789,070  | 9,983,349  | 3,643,922,385  | 10,094,273 | 3,684,409,645  | 10,514,234 | 3,848,209,644  | 10,761,582  | 3,927,977,430  | 11,014,631 | 4,020,340,315  |
| Statewide  | 90,854,940 | 33,162,053,100 | 92,188,754 | 33,648,895,210 | 90,288,068 | 32,955,144,820 | 91,423,220 | 33,460,898,520 | 91,756,533  | 33,491,134,545 | 93,169,936 | 34,007,026,640 |
|            |            | 2015           | 2016       |                | 2017       |                | 2          | 018            | 2           | 019            |            |                |
|            | DVMT       | AVMT           | DVMT       | AVMT           | DVMT       | AVMT           | DVMT       | AVMT           | DVMT        | AVMT           |            |                |
| Benton     | 6,275,314  | 2,290,489,610  | 6,458,633  | 2,363,859,678  | 6,559,181  | 2,394,101,065  | 6,699,070  | 2,445,160,550  | 6,677,388   | 2,437,246,620  |            |                |
| Washington | 5,387,979  | 1,966,612,335  | 5,550,018  | 2,031,306,588  | 5,683,897  | 2,074,622,405  | 5,784,206  | 2,111,235,190  | 5,947,500   | 2,170,837,500  |            |                |
| 2 Counties | 11,663,293 | 4,257,101,945  | 12,008,651 | 4,395,166,266  | 12,243,078 | 4,468,723,470  | 12,483,276 | 4,556,395,740  | 12,624,888  | 4,608,084,120  |            |                |
| Statewide  |            |                |            |                |            |                |            | 26 726 020 000 | 404 660 000 | 37,108,901,395 |            |                |

#### Table 7.4 - Daily Vehicles Miles of Travel and Annual Vehicles Miles of Travel in the 2 County Area and Statewide Arkansas (2009-2019)





Travel Patterns and Travel Forecasting

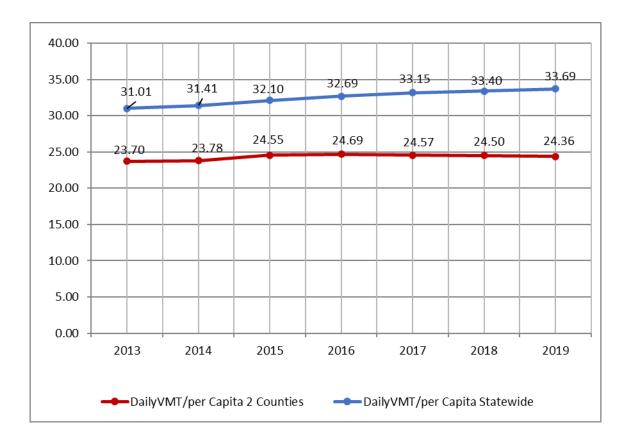



Figure 7.6 - Daily Vehicles Miles Traveled Per Capita for Benton and Washington Counties and Arkansas Statewide

## TRAVEL FORECASTING MODEL

A travel demand or forecasting model is typically utilized by planners, engineers, MPOs and state departments of transportation to forecast future year transportation system deficiencies that may not exist today. These agencies also use models to evaluate the impact of alternative transportation solutions for development of long-range transportation plans. They are primarily used to forecast traffic flows on the transportation system. Models are generally mathematical expressions that are used to replicate the movement of people and vehicles within a transportation system. The traffic forecasts are based on forecasted land use, demographic data, socio-economic factors and travel patterns unique to the region. Travel models are also created to support decision making by providing information about the impacts of alternative transportation and land use policies, as well as demographic and socio-economic trends. A Travel Forecasting Model can be used in a variety of ways, such as for:

#### **Specific Highway Construction Projects:**

- Five-to-thirty-year forecasts
- Traffic impact of changes in land use and development
- Traffic pattern and volumes that are used by city and regional planners before deciding on roads improvements or construction

#### **Transportation Studies:**

- Major investment studies
- Interchange justification studies
- Bypass studies
- Freight studies
- Corridor studies
- Transit studies

#### **General Highway Planning:**

- Traffic impact of changes in land use and development
- Traffic impacts of new roadways or closing roadways
- Evaluate bypasses
- Generate inputs to micro simulation models
- Accident prone locations identification

#### **Development of Long-Range Transportation Plans:**

- State and Regional Plan and TIP development
- Traffic impact of changes in land use and development
- Congestion Management Programs
- Forecast regional pollution from vehicles
- Evaluate Environmental Justice
- Transit route planning

#### Other uses for the model:

- Provides inputs for site-specific studies (including whole cities) that will make studies more accurate (by looking at the big picture) and less costly (future projections for major roads will be readily available to cities and consultants).
- Gives the local jurisdictions an on-going resource of traffic count projections to answer "what-if" questions such as:
  - What if we build a four-lane segment here versus a three lanes road segment?
  - What if we did not make any road improvements in the future? Would more people take transit? How bad would congestion be? What if we add an additional lane?
  - What if a large shopping mall will be built at this location versus that location?
  - What if we put in this east/west corridor?
  - What if we increased mixed-use development? Would more people walk? Would there be more intrazonal trips (origin and destination zone are the same)?

- Provides jurisdictions with results for traffic scenarios such as:
  - Projected traffic counts for the base year as well as forecast years
  - Traffic counts for different road improvement scenarios
  - Traffic counts for intersection improvement and signalization analysis
  - Daily vehicle miles traveled in a region

#### NORTHWEST ARKANSAS TRAVEL FORECASTING MODEL

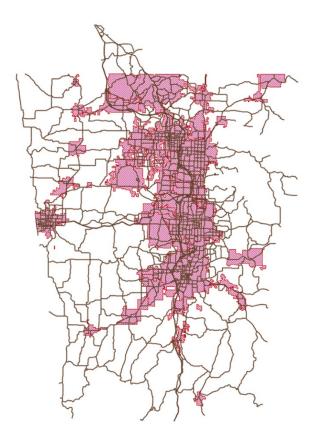
In 2004 NWARPC and the AHTD hired Bernardin, Lochmueller & Associates, Inc. to develop the Northwest Arkansas Travel Demand Model for Benton and Washington Counties, AR. The base year for the model was 2005 and scenario runs have been developed for 2010, 2030 and 2035.

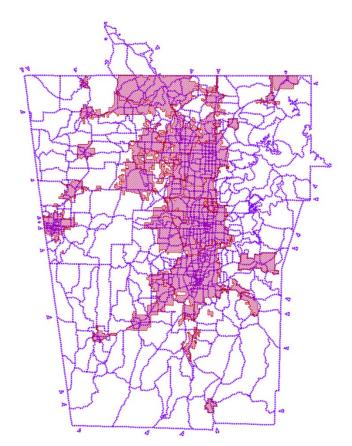
Between the years 2007-2010 NWARPC maintained the model in-house with continuous updates to the network, TAZs, socio-economic data, land use, etc. and used it for projects prioritization, scenarios and the 2035 Regional Transportation Plan and TIP.

In 2010, NWARPC hired Parsons Brinckerhoff to conduct a Western Beltway Corridor Study in Benton and Washington County that would connect to the future Hwy. 549 (Bella Vista bypass) in the northern part of Benton County. Part of the Study was to update the existing model to add McDonald County, Missouri to the study area. The model structure and code were also improved as part of the analysis.

In 2010, NWARPC also administered a study to develop a Transit Development Plan (TDP) in cooperation with the two area transit agencies, Ozark Regional Transit, Inc. and the University of Arkansas Razorback Transit, and Connetics Transportation Group consulting firm.

In November 2012, NWARPC started a Transportation Alternatives Analysis Study that was funded by FTA and NWARPC matching funds as part of an Alternatives Analysis grant awarded that year. NWARPC contracted URS Corporation to determine the need for a major transit investment in the corridor, and to estimate costs, benefits and possible environmental impacts of the various alternatives. As part of the analysis, the consultants used the existing travel demand model to generate ridership estimates in the analyzed corridor. Alliance Transportation Group was the sub-consultant hired to develop the conceptual transit ridership for the Study.


As a requirement of the Census Bureau, the MPO delineated new TAZs and Transportation Analysis Districts (TADs) for the 2010 Census Bureau data collection. The newly delineated 673 internal TAZs and 11 TADs were accepted by the Census Bureau in 2011 and are available at NWARPC.


In July of 2014, the upgrade of the existing travel forecasting model began which added mode choice to the model for the purpose of modeling vehicular travel as well as transit in the MPA. Under this scope of work NWARPC hired Parsons Brinckerhoff to conduct a travel forecasting model upgrade that addressed all the model needs for a functional true mode choice model. The purpose of the project was to develop the mode choice model to include the transit component; upgrade the model from the 2005 base year to 2010 base year; add the Missouri portion of the MPA into the model; and develop the 2020, 2030 and 2040 forecast years. The upgraded model also incorporated a special generator that is easier to configure and update, reconfigured the GISDK code to current industry standards, and identified ways of utilizing the travel time results from the model to aid the local transit agencies in their route planning, evaluation and needs assessment. The validation report for this upgrade can be found at this link: <u>NWA Travel Demand Forecasting Model</u>.

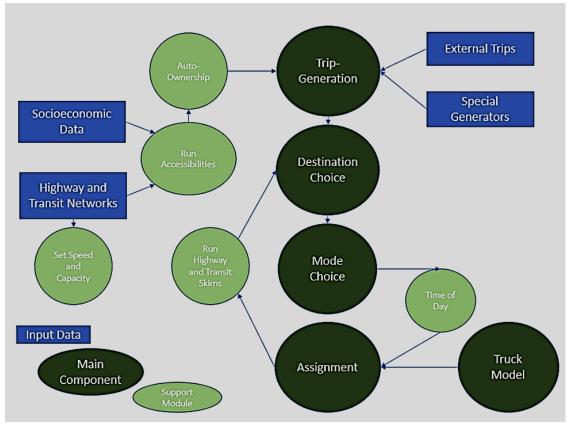
Between 2016-2020 the Northwest Arkansas Travel Forecasting Model was upgraded to update the base year to 2018 and forecast years to 2025, 2035 and 2045 and calibrate the transit component to the 2018 completed On-board transit origin-destination survey. WSP completed enhancements to the mode choice model work by refining the model calibration and performing additional sensitivity testing. This model enhancement improved the coded transit route system and the transit assignment calibration and validation. More about the model upgrade and validation are

detailed in the next section.

The Northwest Arkansas Travel Forecasting model area includes Washington and Benton Counties in Arkansas and the McDonald County, Missouri portion of the MPA. This area includes 678 internal TAZs (Traffic Analysis Zones), of which 348 in Benton County, 324 in Washington County and 6 in McDonald County. The road network includes roads classified Collectors, Arterials and Interstate. The road network and TAZs extent in the MPA are illustrated below.






Map 7.1 – 2045 Road Network and city limits



The Northwest Arkansas Travel Forecasting Model is a regional model based on the traditional four-step sequential modeling method with a feedback loop. The process is summarized in the following steps:

- **Trip Generation** Trip Generation calculates the decimal number of trips of each purpose produced by each household. It does this via regression models estimated on data collected in a 2005 household travel survey.
- **Trip Distribution** Trip Distribution aggregates the household trip productions by purpose and by TAZ and calculates the trip attractions by purpose by TAZ. Productions (Ps) and Attractions (As) are matched up based on a gravity model whereby productions are pulled towards TAZs based on their number of attractions and the travel time from the production TAZ. The skims are used to determine travel times.
- **Mode Choice** The mode of travel for each PA pair is determined based on a logit model which takes the level of service characteristics, the household attributes and the cost of each mode into consideration. The skims are used to determine level of service and cost for each mode.
- **Time of Day** The PA matrices are transformed into origin/destination pairs by time period (am peak, pm peak, off-peak) based on observed percentages of daily traffic.
- Assignment The auto trips are assigned to the highway network and the transit trips are assigned to the transit network. Travel times and costs are re-calculated and are fed back to the trip distribution and mode choice steps. This feedback is done multiple times so that congested travel times are considered in the final set of choices.

Below is a flow-chart of the model. The main model steps are Trip Generation, Destination Choice, Mode Choice and Assignment (both highway and transit). There are several initial steps, like setting the initial speed and capacity of highway links based on area type and determining the number of households in each zone that own 0, 1, 2 or 3+ cars, that are executed prior to the main steps. In addition, the NWA TDM models external trips, special generator trips and truck/commercial vehicle trips.



**Figure 7.7 - Travel Demand Forecasting Steps** 

#### **Model Steps:**

The following are updated model steps and statistics based on the most recent model upgrade:

#### Household Generation

A recent transit on-board survey was completed which enabled a better understanding of transit access, rider profiles, model calibration. Land-use and demographics were captured through employment and household data at Traffic Analysis Zone (TAZ) level:

- In 2018 there are approximately 200K HHs (520K persons) and approximately 250K Jobs (Industry, retail, office and service)
- In 2045 there are approximately 380K HHs (980K persons) and approximately 465K Jobs
- The Northwest Arkansas Region's population and employment almost doubles in 25 years

#### Auto Ownership

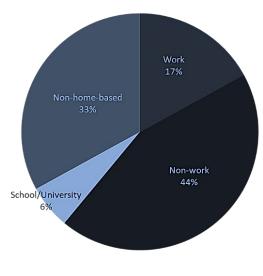
- 5% of HHs have 0 vehicles, 21% have 3 or more vehicles
- Trip Generation
  - Average trips per HH target was 9.9
- Destination Choice
  - 75% of work trips are 15 miles or less, 80% of university trips are < 5 miles, only 6% of school trips are less than15 miles
  - Average trip length for work trips is 12 miles, shopping/personal business is about 6.7 miles
- Mode Choice
  - Regional transit share is less than 1%
  - 87% of work trips are drive-alone (dominate mode for all purposes)
  - 25% of university trips are transit, 13% non-motorized, almost 50% drive alone

| Mode of Trip          | 2018      | 2045      | Trip Mode | 2018  | 204  |
|-----------------------|-----------|-----------|-----------|-------|------|
| Auto                  | 1,570,000 | 2,900,000 | Auto      | 95.7% | 96.0 |
| Transit               | 9,000     | 15,000    | Transit   | 0.6%  | 0.59 |
| Walk/Bike             | 62,000    | 105,000   | Walk/Bike | 3.8%  | 3.59 |
| Total Household Trips | 1,640,000 | 3,000,000 |           | 5.670 |      |

## Daily Weekday Resident Trips by Mode – 2018 and 2045

#### Daily Weekday Resident Trips by Purpose – 2018 and 2045

**Types of Trips:** In the Regional Travel Forecasting Model, trips are classified by trip purpose. Broadly, trips are grouped into the following purposes:


Home-Based Work (HBW): These trips are from home to work and from work back to home. They occur more in peak hours and are a large component of congestion.

Home-Based Shop/Personal Business (HBSB): These trips begin or end at home and cover the range of other trips that people make - shopping, visiting friends, or appointments.

**Non-Home-Based (NHB):** These are the trips made while people are out of their residence, either at work (e.g., a trip to lunch), or between stops while running errands (e.g., a trip from the grocery store to the cleaners). Generally, given their nature, non-home-based trips are shorter than home-based trips and are often made at off-peak travel times.

In addition to these trips, the model also includes the following types of trips: Home-Based School (HBSC), Home-Based University/College (HBU) and Home-Based Other (HBO) as well as Non-Home-Based Work (NHBW).

The mode share is illustrated in the pie-chart below. The majority of trips in both 2018 and 2045 (45 percent) are non-work related, followed by non-home-based types of trips (33 percent).



Mode Share – 2018 and 2045

#### **Base Year Model Calibration and Validation**

Version 3.0.0 of the NWA TDM was calibrated and validated to confirm that the changes made to the model subcomponents still provided highway and transit assignments that could be validated against observed data in the 2018 base year.

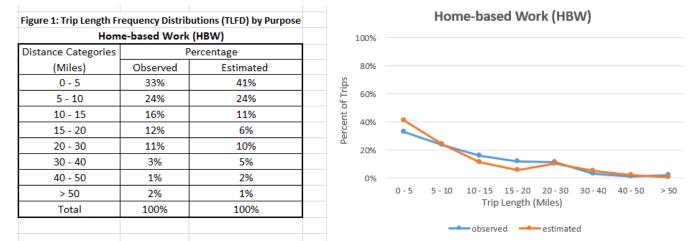
| Trip Purpose                      | Observed ( | 2017 NHTS) | Estimated | (Model) |
|-----------------------------------|------------|------------|-----------|---------|
| inp rupose                        | Trips      | Percent    | Trips     | Percent |
| Home-based Work (HBW)             | 8,901,384  | 15%        | 327,342   | 17%     |
| Home-based University (HBU)       | 412,322    | 1%         | 27,899    | 1%      |
| Home-based School (HBSC)          | 1,606,200  | 3%         | 88,235    | 5%      |
| Home-based Shopping Business (HBS | 15,530,720 | 26%        | 469,221   | 24%     |
| Home-based Other (HBO)            | 12,206,072 | 20%        | 373,616   | 19%     |
| Non-home Based Work (NHBW)        | 3,971,321  | 7%         | 132,722   | 7%      |
| Non-home Based Other (NHBO)       | 17,468,043 | 29%        | 503,012   | 26%     |
| All                               | 60,096,062 | 100%       | 1,922,047 | 100%    |

#### Table 7-5: 2018 Trip Comparison

| Trip Purpose                        | Observed Average Length | Estiamted Average Length |
|-------------------------------------|-------------------------|--------------------------|
| Home-based Work (HBW)               | 11.9                    | 10.6                     |
| Home-based University (HBU)         | 7.6                     | 5.3                      |
| Home-based School (HBSC)            | 5.8                     | 6.8                      |
| Home-based Shopping Business (HBSB) | 6.7                     | 4.9                      |
| Home-based Other (HBO)              | 9.1                     | 7.1                      |
| Non-home Based Work (NHBW)          | 11.5                    | 8.7                      |
| Non-home Based Other (NHBO)         | 7.4                     | 6.3                      |

#### Table 7-6: Average Trip Length (Miles) by Trip Purpose

#### **Trip Generation Calibration**


The 2018 trip generation results were calibrated to match the percentage of trip productions by purpose and trip rates by household observed in the 2017 NHTS data. Due to the small number of Arkansas households, the targets also include households from Mississippi, Missouri and Louisiana.

The comparison is shown in Table 7.5. Clearly, the total trips from the survey does not match but the percentage of trips by purpose matches reasonably well.

The observed trips per household were 9.9 and the modeled trips per household were 9.8. This aligns with values in other regions which range between 8 and 10 daily trips per household on average.

#### **Calibration of Destination Choice**

The calibration of the destination choice model focused on trip-length frequency distributions by purpose and average trip lengths by purpose. The 2017 NHTS data was used to develop the targets. Table 7-6 shows average trip lengths by purpose.



The figures below show the percentage of trips in each distance bin and the observed vs. estimated graphs.

#### Figure 7-8: Home-based Work

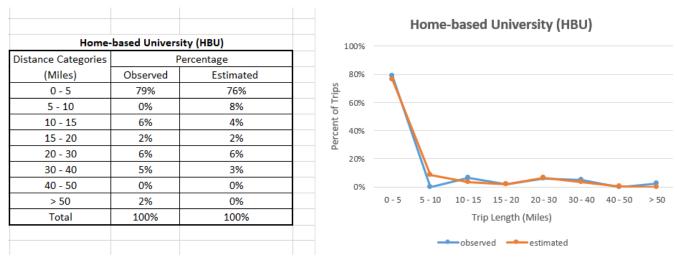
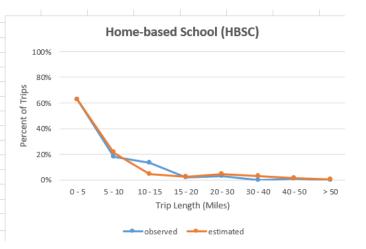




Figure 7-9: Home-based University

| Distance Categories | Per      | rcentage  |
|---------------------|----------|-----------|
| (Miles)             | Observed | Estimated |
| 0 - 5               | 63%      | 63%       |
| 5 - 10              | 18%      | 21%       |
| 10 - 15             | 13%      | 5%        |
| 15 - 20             | 2%       | 2%        |
| 20 - 30             | 3%       | 4%        |
| 30 - 40             | 0%       | 3%        |
| 40 - 50             | 1%       | 1%        |
| > 50                | 0%       | 0%        |
| Total               | 100%     | 100%      |





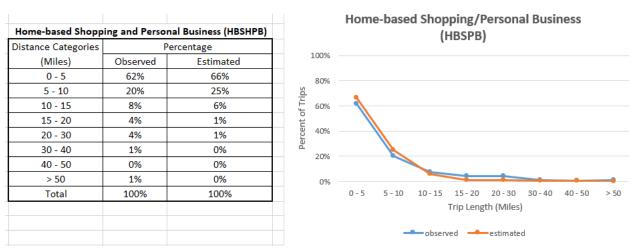



Figure 7-11: Home-based Shopping and Personal Business

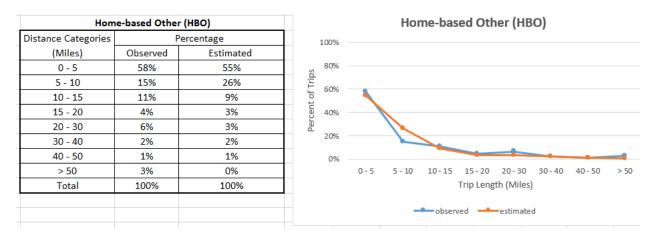
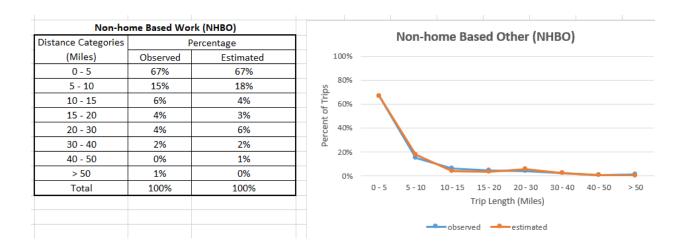




Figure 7-12: Home-based Other

|                     |              |           | Non-home Based Work (NHBW)                    |
|---------------------|--------------|-----------|-----------------------------------------------|
| Non-ho              | me Based Wor | k (NHBW)  | 100%                                          |
| Distance Categories | Р            | ercentage | 100/0                                         |
| (Miles)             | Observed     | Estimated | 80%                                           |
| 0 - 5               | 50%          | 54%       | Lips                                          |
| 5 - 10              | 20%          | 19%       | 60%                                           |
| 10 - 15             | 11%          | 6%        | 40%                                           |
| 15 - 20             | 5%           | 5%        |                                               |
| 20 - 30             | 6%           | 10%       | 20%                                           |
| 30 - 40             | 3%           | 4%        |                                               |
| 40 - 50             | 2%           | 1%        | 0% 0-5 5-10 10-15 15-20 20-30 30-40 40-50 >50 |
| > 50                | 2%           | 0%        | Trip Length (Miles)                           |
| Total               | 100%         | 100%      | The ceneral (wines)                           |
|                     |              |           | observedestimated                             |

#### Figure 7-13: Non-home-based Work



#### Figure 7-14: Non-home-based Other

#### **Mode Choice**

NWARPC hired ETC in 2018 to complete a transit on-board survey. This survey data was used to calibrate the mode choice model for the 2018 base year. Below are some model comparisons after calibration.

| Mode                        | Observed | Estimated |
|-----------------------------|----------|-----------|
| Auto                        | 97.1%    | 96.2%     |
| Transit                     | 0.6%     | 0.5%      |
| Non-motorized (walk + bike) | 2.3%     | 3.3%      |
| Total                       | 100.0%   | 100.0%    |

| Table 7-7: Observe | d to Estimated | <b>Mode Shares</b> | in NW Arkansas |
|--------------------|----------------|--------------------|----------------|
|--------------------|----------------|--------------------|----------------|

|                                 | Observed Trip Pecent |      |           |              |      |      |       |  |  |  |
|---------------------------------|----------------------|------|-----------|--------------|------|------|-------|--|--|--|
| Trip Mode                       | HBW                  | HBU  | HBSC      | HBSB         | HBO  | NHB  | Total |  |  |  |
| Drive Alone                     | 87%                  | 47%  | 61%       | 87%          | 69%  | 58%  | 68%   |  |  |  |
| Shared Ride 2                   | 8%                   | 9%   | 13%       | 8%           | 11%  | 16%  | 13%   |  |  |  |
| Shared Ride 3                   | 3%                   | 1%   | 20%       | 4%           | 17%  | 24%  | 17%   |  |  |  |
| Drive to Razorback (>= 5 miles) | 0%                   | 4%   | 0%        | 0%           | 0%   | 0%   | 0%    |  |  |  |
| Walk to Transit                 | 0%                   | 21%  | 0%        | 1%           | 0%   | 0%   | 0%    |  |  |  |
| PnR to Transit (<5 miles)       | 0%                   | 4%   | 0%        | 0%           | 0%   | 0%   | 0%    |  |  |  |
| KnR to Transit                  | 0%                   | 0%   | 0%        | 0%           | 0%   | 0%   | 0%    |  |  |  |
| Walk                            | 2%                   | 11%  | 5%        | 1%           | 3%   | 2%   | 2%    |  |  |  |
| Bike                            | 0%                   | 2%   | 0%        | 0%           | 0%   | 0%   | 0%    |  |  |  |
| Total                           | 100%                 | 100% | 100%      | 100%         | 100% | 100% | 100%  |  |  |  |
| Estimated                       |                      |      | Estimated | l Trip Perce | nt   |      |       |  |  |  |
| Trip Mode                       | HBW                  | HBU  | HBSC      | HBSB         | HBO  | NHB  | Total |  |  |  |
| Drive Alone                     | 82%                  | 46%  | 62%       | 87%          | 68%  | 58%  | 71%   |  |  |  |
| Shared Ride 2                   | 10%                  | 9%   | 13%       | 8%           | 12%  | 16%  | 12%   |  |  |  |
| Shared Ride 3                   | 3%                   | 0%   | 20%       | 3%           | 16%  | 23%  | 13%   |  |  |  |
| Drive to Razorback (>= 5 miles) | 0%                   | 2%   | 0%        | 0%           | 0%   | 0%   | 0%    |  |  |  |
| Walk to Transit                 | 0%                   | 23%  | 0%        | 0%           | 0%   | 0%   | 0%    |  |  |  |
| PnR to Transit (<5 miles)       | 0%                   | 5%   | 0%        | 0%           | 0%   | 0%   | 0%    |  |  |  |
| KnR to Transit                  | 0%                   | 0%   | 0%        | 0%           | 0%   | 0%   | 0%    |  |  |  |
| Walk                            | 4%                   | 12%  | 5%        | 2%           | 4%   | 2%   | 3%    |  |  |  |
| Bike                            | 0%                   | 2%   | 0%        | 0%           | 0%   | 0%   | 0%    |  |  |  |
| Total                           | 100%                 | 100% | 100%      | 100%         | 100% | 100% | 100%  |  |  |  |

#### Table 7-8: Detailed Observed Mode Shares to Modeled Shares

#### Highway Assignment Validation

The trip generation, trip distribution and mode choice models were calibrated to observed data and the resulting trips were assigned to either the highway or the transit network, depending on the mode chosen.

There were 900 count locations used to compare the model results to however it should be noted that the NWARPC lacked confidence in the observed highway volumes. The model shows higher freeway volumes, but it was decided to leave the validation alone since the observed counts were thought to be low. Table 7-9 below shows the number of observations by facility type within rural and urban TAZs, the sum of the counts on those links, and the corresponding modeled volumes.

| Facility Type            | Number of Links with<br>Counts | Observed Count | Estimated Volume | Percent Difference | Percent RMSE |
|--------------------------|--------------------------------|----------------|------------------|--------------------|--------------|
| Interstate               | 24                             | 1,172,500      | 1,433,455        | 22%                | 40%          |
| Principal Arterial       | 222                            | 4,177,167      | 4,528,738        | 8%                 | 37%          |
| Minor Arterial           | 171                            | 1,328,284      | 1,434,671        | 8%                 | 65%          |
| Collector                | 368                            | 1,528,015      | 1,411,706        | -8%                | 71%          |
| Local                    | 15                             | 45,790         | 40,710           | -11%               | 49%          |
| Ramp & Median Cross-over | 100                            | 572,630        | 675,586          | 18%                | 57%          |
| Total                    | 900                            | 8,824,386      | 9,524,867        | 8%                 |              |

Table 7-9: Observed vs. Modeled Volumes by Facility Type

Table 7-10 shows the validation statistics by volume group. The largest variation is again in the high-count links (i.e. the freeways) which is believed to be a problem with the counts, not the modeled values.

| Count Range   | Number of Links<br>with Counts | Observed Count | Estimated Volume | Percent Difference |
|---------------|--------------------------------|----------------|------------------|--------------------|
| < 5000        | 399                            | 893,464        | 1,022,824        | 14%                |
| 5000 - 10000  | 216                            | 1,551,422      | 1,434,730        | -8%                |
| 10000 - 20000 | 143                            | 1,971,500      | 2,066,158        | 5%                 |
| 20000 - 30000 | 86                             | 2,054,500      | 2,222,394        | 8%                 |
| 30000 - 40000 | 41                             | 1,364,500      | 1,585,788        | 16%                |
| 40000 - 50000 | 4                              | 163,000        | 167,148          | 3%                 |
| > 50000       | 11                             | 826,000        | 1,025,824        | 24%                |
| Total         | 900                            | 8,824,386      | 9,524,867        | 8%                 |

#### Table 7-10: Observed vs. Modeled by Volume Group

The scatterplot in Figure 7-15 below show the observed count vs. the modeled volume at each count location. If the model replicated the observed counts exactly, then the points on the graph would all lie on the regression line and the R-squared value would be 1.0. The results again are skewed by the freeway counts that may not fully reflect the daily flow. In Figure 7-16 the I-49 counts vs. the I-49 modeled volumes are shown.

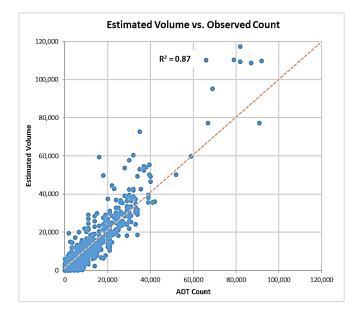



Figure 7-15: Scatterplot and R-squared Value for the 2018 Base Year Model

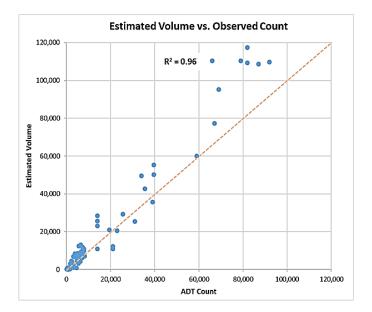


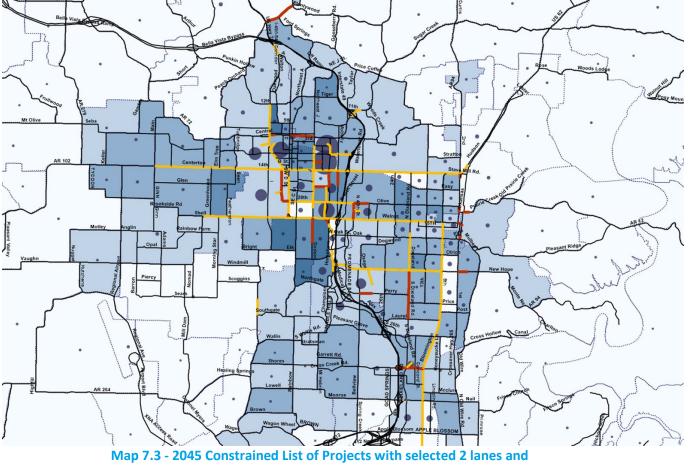

Figure 7-16: Scatterplot and R-squared Value for I-49 Count Locations

#### **Transit Assignment Validation**

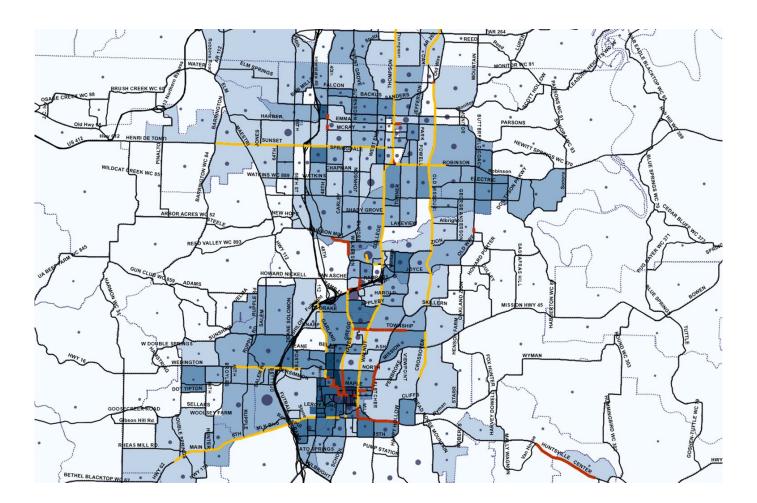
The transit validation was done by looking at observed boardings by route for both Razorback Transit and Ozark Regional Transit (ORT). Several of the ORT transit routes had very low observed boardings which leads to large percent differences when compared to the model values (Table 7-11).

| Agency     | Route           | Observed<br>Boardings/Ridership<br>(2018) | Estimated<br>Boardings/Ridership | Percent<br>Difference |
|------------|-----------------|-------------------------------------------|----------------------------------|-----------------------|
|            | Route 1         | 154                                       | 38                               |                       |
|            | Route 2         | 83                                        | 167                              |                       |
| _          | Route 3         | 58                                        | 92                               |                       |
|            | Route 4         | 171                                       | 127                              |                       |
|            | Route 11        | 86                                        | 157                              |                       |
|            | Route 51        | 63                                        | 129                              |                       |
| Ozark      | Route 52        | 28                                        | 56                               |                       |
|            | Route 61        | 87                                        | 166                              |                       |
|            | Route 62        | 75                                        | 74                               |                       |
|            | Route 63        | 57                                        | 91                               |                       |
|            | Route 64        | 14                                        | 81                               |                       |
|            | Route 490       | 207                                       | 219                              |                       |
|            | Ozark Total     | 1,083                                     | 1,397                            | <b>29</b> %           |
|            | Route 1         | 141                                       | 1                                |                       |
|            | Route 4         | 141                                       | 0                                |                       |
|            | Route7          | 20                                        | 323                              |                       |
|            | Route 11        | 2,237                                     | 2,082                            |                       |
|            | Route 13        | 939                                       | 1,479                            |                       |
| Razorback  | Route 17        | 122                                       | 493                              |                       |
| Razor back | Route 22        | 1,794                                     | 1,027                            |                       |
| -          | Route 26        | 1,342                                     | 2,063                            |                       |
|            | Route 33        | 834                                       | 273                              |                       |
|            | Route 35        | 596                                       | 202                              |                       |
|            | Route 48        | 1,175                                     | 1,712                            |                       |
|            | Razorback Total | 9,341                                     | 9,655                            | 3%                    |
|            | Total           | 10,424                                    | 11,052                           | 6%                    |

 Table 7-11: Observed Boardings Compared to the ETC On-board Survey


## **Travel Forecasting Results**

The 2045 forecast model has proved beneficial in identifying segments of the network that may need improvements in the next 25 years. A series of selection sets have been developed based on a 2045 Fiscally Constrained list of projects and using forecasted socio-economic data from the model.


The Fiscally Constrained List for the road network consists of projects that can reasonably be expected to be funded with Federal-aid funds during the 25-year planning period. This is determined by estimates of Federal-aid funds that can reasonably be expected to come to the area given the area's highway network, Urbanized Area, population, etc. These estimates are provided by ARDOT and MODOT and are not limits, nor are they guarantees of funding. They are conservative, reasonable estimates of future funding to guide development of the 2045 MTP. The Fiscally Unconstrained List includes projects not limited to the estimated available funding.

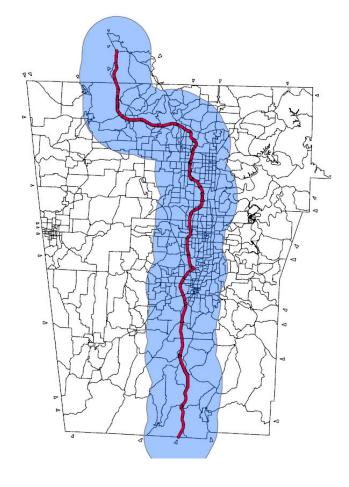
The following two maps represent selections from the 2045 Constrained Model runs with the following specifications:

- Two lane roads with at least 18,000 vehicles per day (vpd) and roads with four lanes or more and 36,000 vpd for the Constrained List of Projects (Map 7.3) for the urbanized corridor in Benton County and
- Two lane roads with at least 18,000 vpd and roads with four lanes or more and 36,000 vpd for the Unconstrained List of Projects (Map 7.4) for the urbanized corridor in Washington County

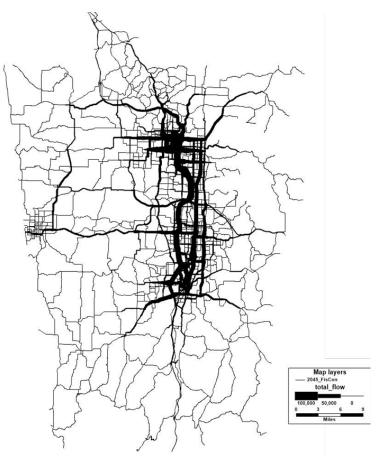




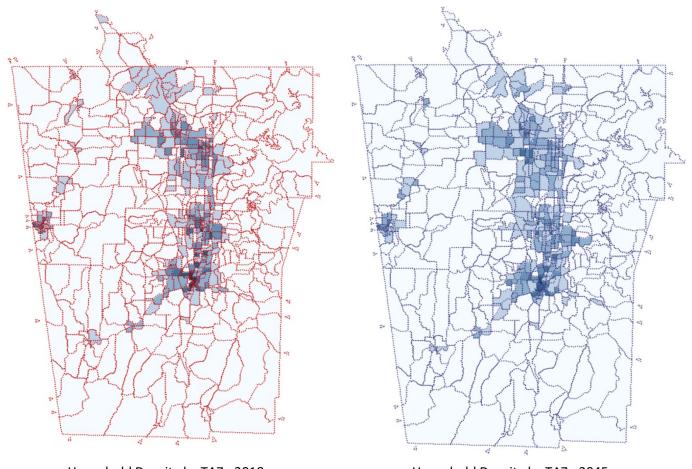



Map 7.4 - 2045 Constrained List of Projects with selected 2 lanes and 18,000+ volumes and 4+ lanes and 36,000+ volumes and employment density in Washington County

The red highlighted roads suggest potential for congestion in 2045 under the current planned road improvements. In general, given the projected increase in population and economic development in the region, the overall road system will become more and more congested in the next 25 years. Map 7-5 illustrates a buffer of 10 miles from I-49 for 2045. Based on the projected socio-economic data in the TAZs in this buffer, there will be 755,205 (77.5%) people and 424,284 (90.9%) jobs in 2045. There is no question that in this scenario most trips will occur between the TAZs in this corridor. Map 7.6 illustrates the total volume of traffic as a gradient on the 2045 Fiscally Constrained forecasted network. Maps 7-7 and 7-8 further illustrate 2045 projected density for both households and employment in the MPA.


#### **Key Modeling Takeaways**

- Many cities and regions around the country are trying to reduce driving (reduce congestion) by introducing congestion pricing, cordon pricing, road usage charges, high parking costs, etc. As a result, cities and regions are using funds from the policies above to fund transit improvements. Locally in our region, no significant incentives/policies have been introduced so far.
- The "cost" of driving is one of the most important factors in travel modeling. Time is money and therefore all modes compete. Besides increasing the "cost" to drive, future mode share changes will be dependent on additional investment in other modes (walk, bike, transit) to reduce their cost.


- The NWA Travel Forecasting Model has no significant projected changes in mode share over the next 25 years even if the *Connect Northwest Arkansas Transit Plan* was to be fully implemented parallel improvements to the highway network keeps auto mode competitive.
- Historical surveyed/observed behavior establishes travelers' likelihood to make trips, own a vehicle, etc. and their <u>responses</u> to land-use and cost. Future behavior assumes the same <u>responses</u>
  - Shifts in behavior require shifts in household composition, land-use, and/or cost of travel for example.
    - if driving becomes more costly (i.e. severe congestion in 2045), other modes will be more competitive
       if land-use is mixed such walking and biking mode shares will increase
  - For FTA's New Starts and Small Starts, FTA will review transit assumptions against actual Northwest Arkansas
- transit data and past transit trends. FTA's Simplified Trips on Transit Software (STOPS) modeling or regional modeling will be required for the application.

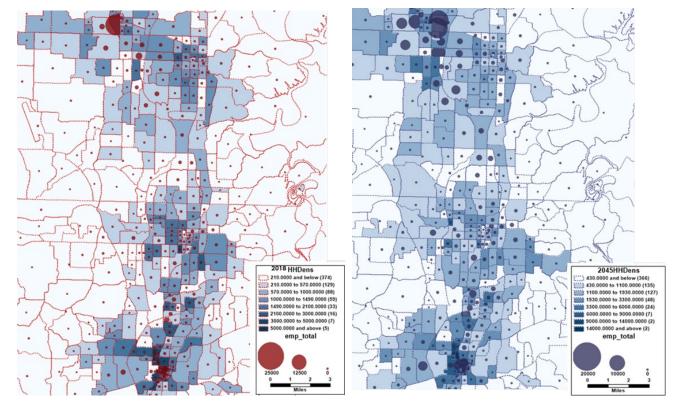


Map 7-5 - I-49 10-Mile Buffer and NWA Travel Forecasting Model TAZs



Map 7.6 - 2045 Total Volume Map – NWA Travel Forecasting Model




Household Density by TAZ - 2018

Household Density by TAZ - 2045

## Map 7-7 – 2018 TAZs Household Density Distribution in 2018 and NWARPC 2045 NWARPC Projected Household Density Distribution

Table 7-12 and 7-13 and Figure 7-17 bellow illustrate actual Level of Service, Annual Average Daily Counts, model results from the 2006 I-540 Study and forecasted 2045 Travel Demand Model volumes. Note that in both tables and figure below, the forecasted 2045 volumes are calculated at the best available location to match the actual ADT data, therefore some inconsistencies may occur. A generalized description of the Level of Service thresholds published by the Utah Department of Transportation is illustrated in Figure 7-18.

The recently updated travel demand model also includes a post-processing tool that builds LOS maps on the fly as the model scenarios are produced. This tool will be utilized by transportation planners and engineers to identify traffic volume bottleneck areas and for a variety of scenarios for future years. An example of the maps produced by this post-processing is illustrated in Map- 7-9.



Map 7-8 – 2018 TAZs Employment Density Distribution and NWARPC 2045 NWARPC projected Employment Density

| FREE FLOW<br>Low volumes and no delays.                                                                                                                    | LOS<br>A |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| STABLE FLOW<br>Speeds restricted by travel<br>conditions, minor delays.                                                                                    | LOS<br>B |  |
| STABLE FLOW<br>Speeds and maneuverability closely<br>controlled because of higher volumes.                                                                 | LOS<br>C |  |
| STABLE FLOW<br>Speeds considerably affected by change in<br>operation conditions. High density traffic<br>restricts maneuverability; volume near capacity. |          |  |
| UNSTABLE FLOW<br>Low speeds; considerable delay; volume<br>at or slightly over capacity.                                                                   | LOS      |  |
| FORCED FLOW<br>Very low speeds; volumes exceed capacity;<br>long delays with stop-and-go traffic.                                                          | LOS      |  |

**Figure 7-18 – Levels of Service (LOS) – Source: Utah Department of Transportation (UDOT) at** -<u>https://www.parleyseis.com/assets/images/Parleys%20LOS%20Levels\_rev2.png</u>

| Interstate 49 Level                                              |         |           |              |           | County 2006 Study)        | 1         |
|------------------------------------------------------------------|---------|-----------|--------------|-----------|---------------------------|-----------|
|                                                                  | Traffic | LOS       | Traffic      | LOS       | LOS                       | LOS       |
|                                                                  | Volumes | (4 Lanes) | Volumes 2024 | (4 Lanes) | (6 Lanes)                 | (8 Lanes) |
|                                                                  | 2004    | 2004      | (2006 Data)  | 2024      | 2024 (I-49 in now         | 2024      |
|                                                                  |         |           |              | (2006     | <b>Constructed to Six</b> |           |
| 1-49 LOCATION                                                    |         |           |              | Data)     | Lanes)                    |           |
| Exit 45 Hwy 74                                                   | 14,600  | Α         | 26,400       | В         | Α                         | Α         |
| Exit 53 Hwy 170                                                  | 18,700  | А         | 33,800       | С         | В                         | A         |
| Exit 58 W. Wilson St.                                            | 20,200  | В         | 36,600       | С         | В                         | Α         |
| Exit 61 Hwy 265/ Hwy 112                                         | 27,300  | В         | 49,300       | D         | С                         | В         |
| Exit 62 Hwy 62 / Hwy 180                                         | 44,000  | С         | 79,500       | F         | D                         | С         |
| Exit 64 Hwy 16 / Hwy 112 Spur                                    | 51,800  | D         | 93,600       | F         | E                         | С         |
| Exit 65 N. Porter Rd.                                            | 54,000  | D         | 97,500       | F         | E                         | С         |
| Exit 66 Hwy 112                                                  | 60,700  | D         | 109,600      | F         | F                         | D         |
| Exit 67 Hwy 71 Business                                          | 48,800  | D         | 88,100       | F         | D                         | С         |
| Exit 69 Great House Springs Rd.                                  | 50,200  | D         | 92,400       | F         | E                         | С         |
| Exit 72 Hwy 412                                                  | 49,700  | D         | 93,300       | F         | E                         | D         |
| Exit 73 Elm Springs Rd.                                          | 55,800  | D         | 106,800      | F         | F                         | D         |
| Exit 76 E. Wagon Wheel Rd.                                       | 55,400  | D         | 108,100      | F         | F                         | D         |
| Exit 77 Proposed Hwy 412                                         | 55,400  | D         | 110,000      | F         | F                         | D         |
| Exit 78 Hwy 264                                                  | 51,100  | D         | 101,700      | F         | E                         | С         |
| Exit 81 Pleasant Grove Rd.                                       | 52,100  | D         | 103,700      | F         | E                         | D         |
| Exit 82 Proposed W. Perry Rd.                                    | 52,100  | D         | 101,500      | F         | E                         | С         |
| Exit 83 Hwy 94                                                   | 51,700  | D         | 100,900      | F         | E                         | С         |
| Exit 85 Hwy 71 Business                                          | 46,200  | С         | 91,900       | F         | D                         | С         |
| Exit 86 Hwy 102 / Hwy 62                                         | 33,900  | В         | 68,800       | E         | С                         | В         |
| Exit 88 Hwy 71 / Hwy 72                                          | 26,900  | В         | 54,600       | D         | В                         | В         |
| https://www.nwarpc.org/pdf/Congestion%20Management/1-11-105%20I- |         |           |              |           |                           |           |

540%20Improvement%20Study%20AHTD%202006.pdf

### Table 7-12: I-49 Levels of Service in Year 2024 (2006 I-540 Improvement Study)

|                                     | ARDOT       | ARDOT         | Projected Traffic     | Projected Traffic | LOS (6 Lanes) 2045  | Percent      | Percent      |
|-------------------------------------|-------------|---------------|-----------------------|-------------------|---------------------|--------------|--------------|
|                                     | 2004 ADT    | 2019 ADT      | Volumes 2024          | Volumes 2045      | based on Simplified | Change       | Change       |
|                                     | Counts      | Counts        | (2006 1-540           | NWA Travel        | Highway Capacity    | 2004 to 2019 | 2019 to 2045 |
|                                     |             |               | Study)                | Demand Forecast   |                     | ARDOT Counts | ARDOT Counts |
| 1-49 LOCATION                       |             |               |                       | Model             |                     |              | to Projected |
| Exit 45 Hwy 74                      | 14,600      | 21,000        | 26,400                | 15,300            | Α                   | 43.84%       | -27.14%      |
| Exit 53 Hwy 170                     | 18,700      | 24,000        | 33,800                | 27,700            | В                   | 28.34%       | 15.42%       |
| Exit 58 W. Wilson St.               | 20,200      | 32,000        | 36,600                | 38,000            | В                   | 58.42%       | 18.75%       |
| Exit 61 Hwy 265/ Hwy 112            | 27,300      | 41,000        | 49,300                | 52,700            | В                   | 50.18%       | 28.54%       |
| Exit 62 Hwy 62 / Hwy 180            | 44,000      | 59,000        | 79,500                | 86,700            | E                   | 34.09%       | 46.95%       |
| Exit 64 Hwy 16 / Hwy 112            | 51,800      | 67,000        | 93,600                | 115,900           | E                   | 29.34%       | 72.99%       |
| Exit 65 N. Porter Rd.               | 54,000      | 71,000        | 97,500                | 120,000           | F                   | 31.48%       | 69.01%       |
| Exit 66 Hwy 112                     | 60,700      | 88,000        | 109,600               | 101,100           | E                   | 44.98%       | 14.89%       |
| Exit 67 Hwy 71 Business             | 48,800      | 68,000        | 88,100                | 126,800           | F                   | 39.34%       | 86.47%       |
| Exit 69 Great House Springs         | 50,200      | 87,000        | 92,400                | 146,600           | F                   | 73.31%       | 68.51%       |
| Exit 72 Hwy 412                     | 49,700      | 67,000        | 93,300                | 137,900           | F                   | 34.81%       | 105.82%      |
| Exit 73 Elm Springs Rd.             | 55,800      | 95,000        | 106,800               | 134,500           | F                   | 70.25%       | 41.58%       |
| Exit 76 E. Wagon Wheel Rd.          | 55,400      | 95,000        | 108,100               | 134,500           | F                   | 71.48%       | 41.58%       |
| Exit 77 Hwy 412 Bypass              | 55,400      | 79,000        | 110,000               | 120,200           | F                   | 42.60%       | 52.15%       |
| Exit 78 Hwy 264                     | 51,100      | 79,000        | 101,700               | 144,400           | F                   | 54.60%       | 82.78%       |
| Exit 81 Pleasant Grove Rd.          | 52,100      | 79,000        | 103,700               | 161,800           | F                   | 51.63%       | 104.81%      |
| xit 82 Promenade Blvd.              | 52,100      | 82,000        | 101,500               | 167,700           | F                   | 57.39%       | 104.51%      |
| Éxit 83 Hwy 94                      | 51,700      | 82,000        | 100,900               | 179,500           | F                   | 58.61%       | 118.90%      |
| Exit 85 Hwy 71 Business             | 46,200      | 76,000        | 91,900                | 160,400           | F                   | 64.50%       | 111.05%      |
| Exit 86 Hwy 102 / Hwy 62            | 33,900      | 55,000        | 68,800                | 98,900            | D                   | 62.24%       | 79.82%       |
| Exit 88 Hwy 71 / Hwy 72             | 26,900      | 43,000        | 54,600                | 82,000            | С                   | 59.85%       | 90.70%       |
| Simplified Highway Capacity Calcula | tion Method | for the Highw | ay Performance Monito | oring System      |                     |              |              |
|                                     |             |               |                       |                   |                     |              |              |

Table 7-13: I-49 Levels of Service in Year 2045

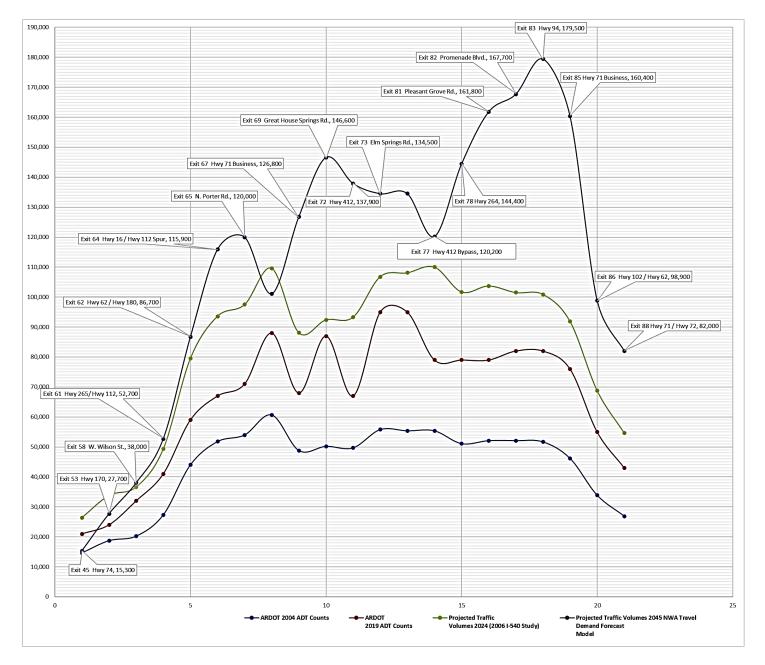
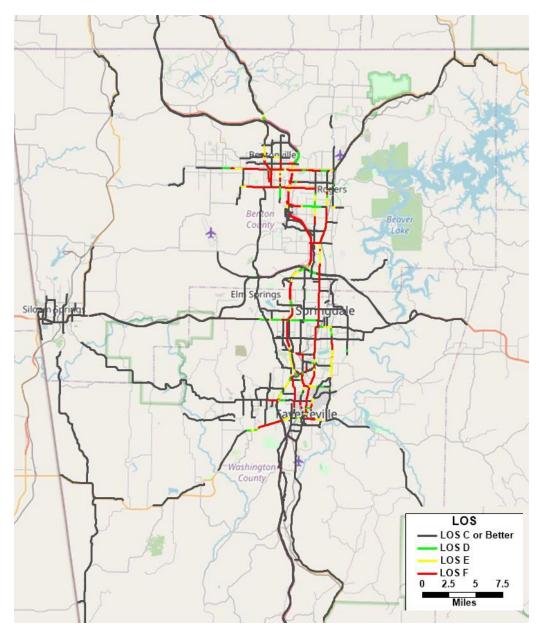




Figure 7-17: I-49 Selected Exit Locations – Average Daily Counts and Projected Volumes



Map 7-9-: 2045 Fiscally Constrained Model Scenario – Level of Service (LOS) Map