CHAPTER 5
SERVICE STANDARDS
CHAPTER 5: SERVICE STANDARDS

INTRODUCTION

Connect NWA lays out a plan to improve and expand transit in the region over the next 10 years and beyond. This plan documents key components of the TDP strategy and process such as the operational and market analysis that helped shape the recommendations, the public engagement to ensure community support, and the regional transit framework that lays out recommendations for an efficient and connected transit system. This chapter will establish Regional Service Standards and serve as a living tool that both compliments Connect NWA and stands on its own. Regional Service Standards will serve as both an internal and external resource that will explain how and why transit is delivered in NWA.

NWA contains two major service providers - Ozark Regional Transit (ORT) and Razorback Transit (RT) - which provide transit service to the cities of Bentonville, Rogers, Springdale, and Fayetteville through a total of 19 fixed routes. As NWA prepares for the future, understanding existing service levels and monitoring performance is essential to providing high quality transit.

This document is intended to serve as a regional standard for both providers to ensure continuity throughout the NWA region. It is not intended to take away autonomy from either provider or to limit a transit provider from going above and beyond the regional standard. The service standards chapter provides NWA with the tools necessary to monitor and apply changes as route productivity and efficiency evolves.

APPLICATION OF SERVICE STANDARDS

The Regional Service Standards were developed as part of the Connect NWA transit study and are rooted in nationwide best practices for transit service planning and adapted to meet the needs of the local context in NWA. The service standards below offer a unique set of service provision types, technology standards, and system designs for the NWA region. Existing transit service provided by both ORT and RT should be measured on an annual basis to track progress towards a system that complies with the service standards and best practices. The service standards include targets and key performance indicators (KPI’s) that provide a quantitative target or measure for NWA to assess if the system is meeting these standards. The data sources available to ORT and RT were considered in the development of these targets and KPI’s. Utilizing the standards outlined in this document will lead to more productive and cost-efficient transit service that connect NWA.

UPDATING SERVICE STANDARDS

Regional Service Standards should be continually monitored and refined based on changes to the operating environment in NWA. Implementation and updating of service is particularly dependent upon financial constraints to involved cities (Bentonville, Rogers, Springdale, Fayetteville) and both ORT and RT. Service standards should be reviewed on an annual basis and adjusted accordingly. If the data sources or technology available to NWA changes, the targets and KPI’s might require an adjustment to ensure they continue to meet the needs of the region.

Service Adjustment Strategies

There are many factors that can influence the type of transit service that should be provided to different markets. Typically, population and employment are essential in driving the demand for service. High population, high employment, or a combination of the two set a basic threshold for the type of transit that should serve a given area. If an area with existing service captures a high amount of a threshold, then it makes sense to consider the provision of high quality, high capacity service to the area (e.g. University of Arkansas or Walmart Headquarters), and vice versa.
However, providing effective regional service necessitates going beyond the basic provisional thresholds. Open lines of communication must exist between partner agencies and transit providers to understand the requirements for high quality transit service. If an area is not represented by an appropriate market for service, it must be understood that providing a type of service that does not fit the threshold will not be cost effective.

TITLE VI DISCLAIMER

It should be recognized that any system alteration that results in a change in service of 25% or greater will be considered a major service change and require a Title VI analysis. For example, if there are 20 existing trips and 5 trips are altered, it would constitute as a 25% change in service and require further analysis in accordance with the Title VI of the Civil Right Act of 1964.

WHAT MAKES EFFECTIVE TRANSIT

In order to achieve high quality regional public transportation service, it is imperative to understand what makes transit effective, and how the standards are used to implement successful transit. There are four straightforward principles to what makes effective transit, and they serve as a foundation for the service standards for the NWA region.

› **It takes me where I want to go...**
 » ORT and RT network coverage should reach areas that contain major trip attractors and generators, and high population and employment densities.

› **When I want to go there...**
 » Service should take users to and from their destination during the hours and on the days that provide citizens better connectivity and accessibility to daily activities (i.e. jobs and medical appointments).

› **It is reliable...**
 » ORT and RT service should result in high On-Time Performance (OTP) ratios and provide users with accurate time points, providing a better understanding of where the buses are located and when they will arrive.

› **It saves me time...**
 » Routes should be efficient and intuitive through direct route design by minimizing circuitous routes and deviations whenever possible, allowing for increased frequencies and travel times.
WHAT ARE SERVICE STANDARDS?

In general, a transit system is comprised of a series of fixed routes that travel between key destinations, designated stop areas where users board and alight transit vehicles, and a schedule that allows potential users to plan for their trip prior to entering the system. Each transit system has a series of policies and procedures that govern services to provide uniformity and consistency throughout the system.

STANDARDS

As the NWA area continues to grow, it is important that transit providers understand how to allocate resources effectively, and which markets will utilize the provided services. The standards are policies which guide the implementation of transit service in the NWA region. The standards are unique to the needs of NWA, however, they are influenced by best practices. The full documentation of standards can be found later in the document.

Technology

- **Real Time Data**
 - informs users and service productivity
- **Transit Signal Priority**
 - gets buses through intersections efficiently
- **Off Board Fare Collection**
 - reduces dwell time at stations

System Design

- **Route Design**
 - a route’s alignment and intuitiveness
- **Stop Spacing**
 - the distance between stops impacting accessibility and speed of service
- **Route Spacing**
 - the distance between routes to prevent service overlap
- **Time Points**
 - specific points along a route to keep a bus on schedule
- **Route Directness**
 - the distance of a route to get from point a to point b
- **Schedule Design**
 - frequency and span of service
- **Bus Stop Standards**
 - amenity allocation and stop placement

TARGETS

In order to implement these standards, targets are set based on the goals for the specific type of service.

- **Frequency**
 - how often a bus comes serves a given stop
- **Span & Days of Service**
 - how long a bus provides service and the amount of days a bus provides service
- **Stop Amenity Level**
 - the quality of stop amenities based on service type and production
- **On-Time Performance**
 - how likely a bus completes its scheduled route on time (percent)
- **Productivity**
 - boardings per mile and hour
- **Route Directness**
 - the maximum distance a route should exceed the most linear route available (i.e. the fastest way an automobile could travel) between two points
Stop Spacing

- the ideal distance between stops based on service type

Propensity

- total employment and population density covered by transit (represented by the number of people and jobs per acre on a 0 - 25 scale)

KEY PERFORMANCE INDICATORS

Finally, KPI's have been selected to provide a metric for assessing the progress of NWA in meeting the targets set in these service standards. The method for evaluating this will be further outlined in the service standards.

TYPES OF SERVICE

Types of transit service are largely dependent on existing markets and land uses. Dense areas containing trip generators (e.g. University of Arkansas) will require service types that can effectively serve high demand/ridership numbers (i.e. intuitive, linear routes with high frequencies), whereas areas more suburban in nature will require completely different service to effectively use resources (i.e. farther stop placements and necessary deviations to market clusters).

Generally, the transit service provided in NWA can be grouped into four categories: regional connectors, frequent service, coverage service, and mobility zones. These categories of service types are used to set unique targets for implementing the service standards. A description of each service type are provided below with a graphic that represents the typical stop spacing and frequency.

REGIONAL CONNECTORS

Regional Connectors are a fixed route transit service that provide service from city to city along a major arterial at high frequencies with limited stops. These routes cover key areas and give users increased accessibility and connectivity to multiple urban areas in a region.

FREQUENT SERVICE

Fixed route service that has demand for more frequent service due to destinations and or ridership. Accordingly, frequent fixed route service refers to transit that stays within denser, more urban areas where transit demand tends to be concentrated.

COVERAGE SERVICE

Coverage service refers to transit with a set route alignment, designated stops, and a fixed operating schedule.

MOBILITY ZONES

Mobility zones are designated areas with demand response service available to help solve the first-last mile for system users. Mobility zones are coverage areas set in the place of unproductive fixed routes/deviations. This allows for the provider to maintain market coverage in an effective, cost efficient way.
FUTURE TYPES OF SERVICE

Connect NWA is a 10-year TDP, and therefore aims to help the NWA region become ‘Transit Ready’ and not only plan for short-term ways to improve existing transit, but also ways to implement effective transit once a baseline fixed route service has been set. While this may refer to minor improvements such as existing service types being extended to outlying areas, or increased frequencies for fixed routes, this also means the possibility of introducing new types of transit that can better absorb transit demand driven by future population and employment growth.

HIGH CAPACITY TRANSIT

High Capacity Transit (HCT) refers to any mode of public transportation that is designed to provide high quality service to many riders. This typically equates to higher frequencies, direct routes with limited stops, real-time information, intuitive scheduling, dedicated branding, and dedicated right-of-way (ROW)/guideways. Two primary examples that could serve as north-south connectors in the NWA region are discussed below.

Light Rail Transit (LRT)

LRT is fixed route rail transit that operates on a mix or solely exclusive ROW in urban areas. This type of HCT is made to carry medium to high capacity travel volumes. LRT is usually electrically powered. LRT systems can operate at-grade, grade separated, or a combination of the two.

Bus Rapid Transit (BRT)

BRT refers to fixed route bus service that operates in a combination of designated guideway, separate lanes, and mixed traffic. BRT operates at high frequencies with limited stops to ensure on-time performance. While this type of BRT varies in design around the country, systems range from sophisticated (large stations, off board fare collection, elevated boarding platforms, etc.) to those simply providing an express service in a separated or dedicated guideway to ensure high quality service.

BRT service uses branding to separate it from standard or even express fixed route service, providing users with an experience like other transit modes that are grade separated or have designated guideways (e.g. light rail).

HCT & Population Density

It is important to understand appropriate population density thresholds when considering service type. Areas containing higher concentrations of population are more conducive to HCT as they contain an existing market.

Per the 2018 ORT Smart Bus Rapid Transit Study (for the US Hwy. 71B Corridor), an area with a population density over 2,000 persons per square mile may be able to support HCT. The study also found majority a of US Hwy. 71B to sustain over 3,000 people per square mile between major city pairs Bentonville and Rogers, as well as Springdale and Fayetteville. Within all four of the analyzed cities, small pockets of population density of over 12,000 people per square mile exist.

Regarding Federal Transit Administration (FTA) Capital Improvement Grants (CIG) for HCT projects, areas with an average persons per square mile of 6,000 or higher score competitively based on the FTA's Quantitative Element Rating Guide (Guidelines for Land Use and Economic Development Effects for New Starts and Small Starts Projects, 2013). Further, the Transit Cooperative Research Program’s (TCRP) Bus Rapid Transit Practitioner’s Guide (2007) states that BRT should be considered if an urbanized area population exceeds 750,000 persons total, with a central business district (CBD) population total of at least 50,000. However, exceptions may be made with the presence of a large university (e.g. University of Arkansas) or other outlying major activity centers (e.g. Walmart headquarters).

As NWA moves forward with transit implementation, it will be important to understand which areas are most suited for HCT based on population thresholds. The above references serve as a guiding tool for ORT and RT when the time is appropriate.
NWA TARGETS BY SERVICE TYPE

The following section combines targets and service types (Regional Connector, Frequent Service, Coverage Service, and Mobility Zones) to help further guide implementation. Targets have been applied to each service type to best reflect their context. For example, Regional Connectors strive to provide more linear routes for direct connections over longer distances, while Frequent Services aim to reach areas containing high population and employment to serve and connect urban areas as efficiently as possible.

The following dashboards provide specific measures for each of the previously mentioned target measures by service type, and are illustrated by example graphics. Each service type contains a different area of the NWA region, and shows only the service type the targets are referring to. In general, all areas contain a mixture of most or all of the service types provided in this study.

It must be noted that all targets represent minimum standards that ORT and RT should aim to achieve. It is possible, and highly likely, that service will be exceeding these targets. In essence, targets are not definitive levels of service, but a guide to make high quality transit present throughout NWA.

It is also important to understand that all targets represent goals for peak hour service. Target values were created to be realistic for a regional transit system, and represent targets that both ORT and RT can work towards achieving in tandem.
REGIONAL CONNECTORS

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies

TARGETS

Service every 30 minutes

16 hours daily

7 days a week

Stop Amenities Level 3

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

5 boardings per mile

20 boardings per hour

<125% route directness

Propensity Score 6

Stop spacing varies
Chapter 5: Service Standards

FREQUENT SERVICE

TARGETS

- Service every **30 minutes**
- 16 hours daily
- 7 days a week
- Stop Amenities Level **2**
- On Time Arrivals 90% Mobility Hubs
- 80% Timepoints
- 70% Stops
- 2 boardings per mile
- 30 boardings per hour
- Propensity Score **11**
- <125% route directness
- Bus stops every 3/4 mile

Stop Amenities

- Boardings per hour: 30
- Distance: 3/4 mile

Route Directness

- Johnson to Fayetteville
- Route <125%

Map

- To Springdale, Rogers, & Bentonville
- Bus stops every 3/4 mile
- Propensity Score 11

Chapter 5: Service Standards
COVERAGE SERVICE

Service every 40-60 minutes

16 hours daily

7 days a week

Stop Amenities Level 1

On Time Arrivals 90% Mobility Hubs

80% Timepoints

70% Stops

15 boardings per hour

<175% route directness

1 boardings per mile

1/4 mile

Propensity Score 6

TARGETS
Chapter 5: Service Standards

MOBILITY ZONES

- Service within 30 minutes
- 16 hours daily
- No fixed stops
- On Time Arrivals 90% Mobility Zones
- No productivity tracking
- No fixed route
- Propensity Score 4

TARGETS

Springdale
TECHNOLOGY STANDARDS

Enhanced technology is critical for an agency’s performance. Ensuring updated technology when possible affects how passengers and operators understand the service and its productivity, as well as overall service efficiency.

REAL TIME/DATA TRACKING

Real time/data tracking technology allows for transit agencies to better understand existing ridership trends. It is recommended that all ORT and RT buses are equipped with the technologies listed below.

Automated Passenger Counters

Automated Passenger Counters (APC) are sensors that accurately track boardings and alightings occurring on a transit vehicle. This technology allows service providers to better track ridership trends, and therefore plan and implement better service.

Automatic Vehicle Location

Automatic Vehicle Location (AVL) is a technology which combines the use of computers and global positioning software (GPS) to maintain location of buses as they operate. This allows agencies to better understand how buses/operators are performing in real-time, and allows for better user experience as they can track buses in real time.

TRANSIT SIGNAL PRIORITY

Transit Signal Priority (TSP) is a tool that prioritizes transit vehicle movement through signalized intersections over other modes of transportation. This is done by decreasing intersection dwell times for transit vehicles by extending green lights or decreasing red lights when the vehicle is present. TSP is relatively cost effective and provides little impact to existing traffic. This method is accomplished through the implementation of detector systems, priority request generators, and software which is programmed to prioritize and grant requests.

OFF BOARD FARE COLLECTION (EXPANSION)

Off board fare collection refers to the practice of providing users the ability to pay for transit fare prior to boarding through at-station kiosks or via smartphone (in place of traditional “front-door” payment methods). With this method fare takes form in loadable smart cards/credit cards, e-tickets, paper tickets, or smartphone apps. This enhanced fare collection method makes all-door boarding possible, thus reducing dwell times at stations/stops. All-door boarding is typically facilitated by proof-of-payment fare control, where users must be able to show transit operators/staff a purchased ticket if prompted.

ANALYTIC/OPERATIONAL TRANSIT SOFTWARE

Transit software exists to help plan, deliver, evaluate, and operate transit effectively (e.g. Remix, Passio, Pantonium, etc.). Such software is currently being utilized in NWA, however, moving forward it is critical for both ORT and RT to collaborate and ensure similar software platforms are used to create a cohesive system.

SYSTEM DESIGN

System alignment is critical to both transit efficiency and cost. A system should be designed to take citizens where they want to go, in a direct and intuitive manner. Well designed systems take advantage of existing land uses/market concentrations that best support transit, therefore eliminating unproductive routes. The following sections detail practices for efficient system design.
ROUTE DESIGN

Routes should be intuitive and easy for users to understand/navigate. Route names should be simplified and should be defined by service area. Routes should be designed to best serve the community and the reasons and benefits for each design should be defined. Regardless of the type of design selected, ORT and RT should strive to achieve the following route design strategies:

- **Simple route names** with one route name when there is service on both sides of the street;
- **Intuitive design** to minimize detours and confusing alignments;
- **Operate along high-activity corridors** to provide access to key destinations; and
- **Ensure optimal travel times** for users that maximize transfer opportunities.

STOP SPACING

The process of spacing stops must balance two considerations – accessibility to bus stops and speed of service. Stops placed closer together provide more coverage to users, however, also cause buses to spend more time at bus stops and therefore can cause routes to be less time efficient. Stop spacing recommendations based on service type are provided.

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>0.25</td>
</tr>
<tr>
<td>Frequent</td>
<td>0.75</td>
</tr>
<tr>
<td>Regional Connector</td>
<td>Varies</td>
</tr>
<tr>
<td>Mobility Zone</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Bus stops should be accessible. It should be a priority of ORT/RT to ensure the region’s transit market is adequately served by public transportation. Given that every transit trip is also a walking trip, NWA providers and partners should aspire to connect all bus stops to the pedestrian network to further improve safety and comfort for users.

ROUTE SPACING

Routes should be spaced in a way to prevent two routes from running parallel and providing similar service to a corridor. In general, routes should remain on corridors equal to or more than a half mile from one another. Figure 5.1 displays an example of routes spaced appropriately (located just beyond one another’s half-mile buffer).

TIME POINTS

Time points are identified at major stops along a route that the bus uses to maintain schedule. These locations are designated along a route to control the spacing of buses (bus headway), creating the route schedule for passengers. Best practice suggests time points be placed at strategic points such as major intersections, major trip generators, and at destinations where the highest boarding activity is recorded. Time points are maintained by the driver not leaving the designated stop prior to the scheduled time. This practice contributes to user satisfaction by ensuring the bus does not depart before the scheduled time.
ROUTE DIRECTNESS

Direct routes minimize passenger travel time. Routes should use existing infrastructure to go from point A to point B in the shortest amount of distance. Using arterial streets as much as possible typically allows for more direct routes with posted speeds conducive to faster travel. It must be noted that routes may deviate if a market or key destination necessitates coverage (e.g., end of the line terminal loop, employment center/campus, etc.). Further, different types of service may dictate route directness. For example, express routes will be as linear as possible with limited stops, while local routes may provide more coverage and deviations.

Route directness (Figure 5.2) for Connect NWA compares how a transit route’s path connecting point a to point b compares to the most direct route (i.e., how an automobile would travel) to connect the same points. This measure is represented by a percentage. For example, regional connector routes have a target percentage of 125%. This assumes that regional connector routes should be designed to be, at most, 25% longer than the most direct automobile route. The higher the percentage exceeds 100%, the more deviations are occurring within the route.

![Figure 5.2: Route Directness](image)

<table>
<thead>
<tr>
<th>SERVICE TYPE</th>
<th>DISTANCE TRAVELED FROM POINT A TO POINT B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile</td>
<td></td>
</tr>
<tr>
<td>Regional Connectors</td>
<td>0.25 mi</td>
</tr>
<tr>
<td>Frequent</td>
<td>0.25 mi</td>
</tr>
<tr>
<td>Local</td>
<td>0.75 mi</td>
</tr>
</tbody>
</table>

SCHEDULE DESIGN

Frequency

Frequency is how often a bus arrives at a given stop or departs from a terminal. Higher frequency translates into a reduction in overall travel time by providing freedom to show up to a stop or station and know that the next trip will arrive soon. It also minimizes transfer time on trips where passengers use more than one route. In general, the lower the frequency, the better the route is performing under this measure.

Span of Service

Span of service refers to the number of hours during the day transit service is provided. Span of service may apply to a route, segment of a route, or between two specific locations, and may differ by day of week and hour of the day (peak vs non-peak).

BUS STOP STANDARDS

Amenities

Providing access to NWA transit users, bus stops should create a positive experience. Minimum standards for ORT and RT bus stops ensure that a basic set of passenger amenities are provided at each stop location. Different amenity levels have been provided (Table 5.2) and should be applied to stops when applicable. In general, available funding, service types, ridership, and transfer totals should all be used to gauge which amenity level should be implemented at a stop.

Figures 5.3 through 5.5 on the following pages provide graphic examples as to how bus stop amenity levels may appear based on amenity types added.

![Table 5.2: Amenity Levels](image)

<table>
<thead>
<tr>
<th>AMENITIES</th>
<th>LEVEL 1</th>
<th>LEVEL 2</th>
<th>LEVEL 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA Accessibility</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bus Sign</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>System Information</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Shelter & Bench</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sidewalk Connectivity</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Safety Lighting</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Trash Bag/Can</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Landscaping/Planters</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Art/Placemaking</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
FIGURE 5.3: LEVEL 1 STOP AMENITIES

FIGURE 5.4: LEVEL 2 STOP AMENITIES
Far-Side Stops

A far-side bus stop (Figure 5.6) is one that follows a signalized intersection, allowing the bus to pass through traffic and for users to board/alight safely near crosswalks/pedestrian infrastructure. This is the ideal stop location as it provides a safe environment for pedestrians and causes the least traffic disruption.

Near-Side Stops

Near-side stops (Figure 5.7) are those that are located immediately before a signalized intersection. This allows for boarding and alighting when the transit vehicle is stopped at a red light. This form of stop is less desirable than far-side locations as it can cause the transit vehicle to block through traffic at the light. This can decrease pedestrian site distances and cause automobile drivers to make unsafe traffic maneuvers.

Mid-Block Stops

Mid-Block stops (Figure 5.8) are found along roadways in between signalized intersections. Mid-block stop locations are the least desirable, as they create an unsafe and inconvenient environment for pedestrians as they typically do not provide a crosswalk to reach the other side of the road. It is recommended that mid-block stops are created in tandem with mid-block crosswalk infrastructure to increase safety and efficiency.
FIGURE 5.6: FAR-SIDE STOP EXAMPLE
FIGURE 5.7: NEAR-SIDE STOP EXAMPLE
CONCLUSION

Connect NWA Regional Service Standards have been created to serve as a living tool to work in tandem with the Connect NWA implementation plan and to serve as a standalone set of transit standards moving forward. As the NWA region prepares for the future, it remains critical that ORT and RT use these Regional Service Standards to understand existing service levels and to continuously monitor performance to ensure high quality transit.